3.1.17 \(\int (d+e x) (a+b \arctan (c x))^3 \, dx\) [17]

3.1.17.1 Optimal result
3.1.17.2 Mathematica [A] (verified)
3.1.17.3 Rubi [A] (verified)
3.1.17.4 Maple [C] (warning: unable to verify)
3.1.17.5 Fricas [F]
3.1.17.6 Sympy [F]
3.1.17.7 Maxima [F]
3.1.17.8 Giac [F]
3.1.17.9 Mupad [F(-1)]

3.1.17.1 Optimal result

Integrand size = 16, antiderivative size = 264 \[ \int (d+e x) (a+b \arctan (c x))^3 \, dx=-\frac {3 i b e (a+b \arctan (c x))^2}{2 c^2}-\frac {3 b e x (a+b \arctan (c x))^2}{2 c}+\frac {i d (a+b \arctan (c x))^3}{c}-\frac {\left (d^2-\frac {e^2}{c^2}\right ) (a+b \arctan (c x))^3}{2 e}+\frac {(d+e x)^2 (a+b \arctan (c x))^3}{2 e}-\frac {3 b^2 e (a+b \arctan (c x)) \log \left (\frac {2}{1+i c x}\right )}{c^2}+\frac {3 b d (a+b \arctan (c x))^2 \log \left (\frac {2}{1+i c x}\right )}{c}-\frac {3 i b^3 e \operatorname {PolyLog}\left (2,1-\frac {2}{1+i c x}\right )}{2 c^2}+\frac {3 i b^2 d (a+b \arctan (c x)) \operatorname {PolyLog}\left (2,1-\frac {2}{1+i c x}\right )}{c}+\frac {3 b^3 d \operatorname {PolyLog}\left (3,1-\frac {2}{1+i c x}\right )}{2 c} \]

output
-3/2*I*b*e*(a+b*arctan(c*x))^2/c^2-3/2*b*e*x*(a+b*arctan(c*x))^2/c+I*d*(a+ 
b*arctan(c*x))^3/c-1/2*(d^2-e^2/c^2)*(a+b*arctan(c*x))^3/e+1/2*(e*x+d)^2*( 
a+b*arctan(c*x))^3/e-3*b^2*e*(a+b*arctan(c*x))*ln(2/(1+I*c*x))/c^2+3*b*d*( 
a+b*arctan(c*x))^2*ln(2/(1+I*c*x))/c-3/2*I*b^3*e*polylog(2,1-2/(1+I*c*x))/ 
c^2+3*I*b^2*d*(a+b*arctan(c*x))*polylog(2,1-2/(1+I*c*x))/c+3/2*b^3*d*polyl 
og(3,1-2/(1+I*c*x))/c
 
3.1.17.2 Mathematica [A] (verified)

Time = 0.98 (sec) , antiderivative size = 342, normalized size of antiderivative = 1.30 \[ \int (d+e x) (a+b \arctan (c x))^3 \, dx=\frac {a^2 c (2 a c d-3 b e) x+a^3 c^2 e x^2+3 a^2 b e \arctan (c x)+3 a^2 b c^2 x (2 d+e x) \arctan (c x)-3 a^2 b c d \log \left (1+c^2 x^2\right )+3 a b^2 e \left (-2 c x \arctan (c x)+\left (1+c^2 x^2\right ) \arctan (c x)^2+\log \left (1+c^2 x^2\right )\right )+6 a b^2 c d \left (\arctan (c x) \left ((-i+c x) \arctan (c x)+2 \log \left (1+e^{2 i \arctan (c x)}\right )\right )-i \operatorname {PolyLog}\left (2,-e^{2 i \arctan (c x)}\right )\right )+b^3 e \left (\arctan (c x) \left ((3 i-3 c x) \arctan (c x)+\left (1+c^2 x^2\right ) \arctan (c x)^2-6 \log \left (1+e^{2 i \arctan (c x)}\right )\right )+3 i \operatorname {PolyLog}\left (2,-e^{2 i \arctan (c x)}\right )\right )+b^3 c d \left (2 \arctan (c x)^2 \left ((-i+c x) \arctan (c x)+3 \log \left (1+e^{2 i \arctan (c x)}\right )\right )-6 i \arctan (c x) \operatorname {PolyLog}\left (2,-e^{2 i \arctan (c x)}\right )+3 \operatorname {PolyLog}\left (3,-e^{2 i \arctan (c x)}\right )\right )}{2 c^2} \]

input
Integrate[(d + e*x)*(a + b*ArcTan[c*x])^3,x]
 
output
(a^2*c*(2*a*c*d - 3*b*e)*x + a^3*c^2*e*x^2 + 3*a^2*b*e*ArcTan[c*x] + 3*a^2 
*b*c^2*x*(2*d + e*x)*ArcTan[c*x] - 3*a^2*b*c*d*Log[1 + c^2*x^2] + 3*a*b^2* 
e*(-2*c*x*ArcTan[c*x] + (1 + c^2*x^2)*ArcTan[c*x]^2 + Log[1 + c^2*x^2]) + 
6*a*b^2*c*d*(ArcTan[c*x]*((-I + c*x)*ArcTan[c*x] + 2*Log[1 + E^((2*I)*ArcT 
an[c*x])]) - I*PolyLog[2, -E^((2*I)*ArcTan[c*x])]) + b^3*e*(ArcTan[c*x]*(( 
3*I - 3*c*x)*ArcTan[c*x] + (1 + c^2*x^2)*ArcTan[c*x]^2 - 6*Log[1 + E^((2*I 
)*ArcTan[c*x])]) + (3*I)*PolyLog[2, -E^((2*I)*ArcTan[c*x])]) + b^3*c*d*(2* 
ArcTan[c*x]^2*((-I + c*x)*ArcTan[c*x] + 3*Log[1 + E^((2*I)*ArcTan[c*x])]) 
- (6*I)*ArcTan[c*x]*PolyLog[2, -E^((2*I)*ArcTan[c*x])] + 3*PolyLog[3, -E^( 
(2*I)*ArcTan[c*x])]))/(2*c^2)
 
3.1.17.3 Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.05, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {5389, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (d+e x) (a+b \arctan (c x))^3 \, dx\)

\(\Big \downarrow \) 5389

\(\displaystyle \frac {(d+e x)^2 (a+b \arctan (c x))^3}{2 e}-\frac {3 b c \int \left (\frac {e^2 (a+b \arctan (c x))^2}{c^2}+\frac {\left (d^2 c^2+2 d e x c^2-e^2\right ) (a+b \arctan (c x))^2}{c^2 \left (c^2 x^2+1\right )}\right )dx}{2 e}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {(d+e x)^2 (a+b \arctan (c x))^3}{2 e}-\frac {3 b c \left (\frac {(c d-e) (c d+e) (a+b \arctan (c x))^3}{3 b c^3}+\frac {i e^2 (a+b \arctan (c x))^2}{c^3}+\frac {2 b e^2 \log \left (\frac {2}{1+i c x}\right ) (a+b \arctan (c x))}{c^3}-\frac {2 i b d e \operatorname {PolyLog}\left (2,1-\frac {2}{i c x+1}\right ) (a+b \arctan (c x))}{c^2}-\frac {2 i d e (a+b \arctan (c x))^3}{3 b c^2}-\frac {2 d e \log \left (\frac {2}{1+i c x}\right ) (a+b \arctan (c x))^2}{c^2}+\frac {e^2 x (a+b \arctan (c x))^2}{c^2}+\frac {i b^2 e^2 \operatorname {PolyLog}\left (2,1-\frac {2}{i c x+1}\right )}{c^3}-\frac {b^2 d e \operatorname {PolyLog}\left (3,1-\frac {2}{i c x+1}\right )}{c^2}\right )}{2 e}\)

input
Int[(d + e*x)*(a + b*ArcTan[c*x])^3,x]
 
output
((d + e*x)^2*(a + b*ArcTan[c*x])^3)/(2*e) - (3*b*c*((I*e^2*(a + b*ArcTan[c 
*x])^2)/c^3 + (e^2*x*(a + b*ArcTan[c*x])^2)/c^2 - (((2*I)/3)*d*e*(a + b*Ar 
cTan[c*x])^3)/(b*c^2) + ((c*d - e)*(c*d + e)*(a + b*ArcTan[c*x])^3)/(3*b*c 
^3) + (2*b*e^2*(a + b*ArcTan[c*x])*Log[2/(1 + I*c*x)])/c^3 - (2*d*e*(a + b 
*ArcTan[c*x])^2*Log[2/(1 + I*c*x)])/c^2 + (I*b^2*e^2*PolyLog[2, 1 - 2/(1 + 
 I*c*x)])/c^3 - ((2*I)*b*d*e*(a + b*ArcTan[c*x])*PolyLog[2, 1 - 2/(1 + I*c 
*x)])/c^2 - (b^2*d*e*PolyLog[3, 1 - 2/(1 + I*c*x)])/c^2))/(2*e)
 

3.1.17.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5389
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(q_.), x_Sy 
mbol] :> Simp[(d + e*x)^(q + 1)*((a + b*ArcTan[c*x])^p/(e*(q + 1))), x] - S 
imp[b*c*(p/(e*(q + 1)))   Int[ExpandIntegrand[(a + b*ArcTan[c*x])^(p - 1), 
(d + e*x)^(q + 1)/(1 + c^2*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && 
 IGtQ[p, 1] && IntegerQ[q] && NeQ[q, -1]
 
3.1.17.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 7.93 (sec) , antiderivative size = 3886, normalized size of antiderivative = 14.72

method result size
parts \(\text {Expression too large to display}\) \(3886\)
derivativedivides \(\text {Expression too large to display}\) \(3901\)
default \(\text {Expression too large to display}\) \(3901\)

input
int((e*x+d)*(a+b*arctan(c*x))^3,x,method=_RETURNVERBOSE)
 
output
a^3*(1/2*e*x^2+d*x)+b^3/c*(1/2*arctan(c*x)^3*c*x^2*e+arctan(c*x)^3*c*x*d-3 
/2/c*(arctan(c*x)^2*c*x*e-c*d*polylog(3,-(1+I*c*x)^2/(c^2*x^2+1))-2*d*c*ln 
((1+I*c*x)/(c^2*x^2+1)^(1/2))*arctan(c*x)^2-2*ln(2)*c*d*arctan(c*x)^2+2*c* 
d*ln(2)*dilog(1+I*(1+I*c*x)/(c^2*x^2+1)^(1/2))+2*c*d*ln(2)*dilog(1-I*(1+I* 
c*x)/(c^2*x^2+1)^(1/2))-c*d*ln(2)*polylog(2,-(1+I*c*x)^2/(c^2*x^2+1))+ln(c 
^2*x^2+1)*arctan(c*x)^2*c*d+e*arctan(c*x)*ln(1+I*(1+I*c*x)/(c^2*x^2+1)^(1/ 
2))+e*arctan(c*x)*ln(1-I*(1+I*c*x)/(c^2*x^2+1)^(1/2))+e*arctan(c*x)*ln(1+( 
1+I*c*x)^2/(c^2*x^2+1))-1/3*arctan(c*x)^3*e-1/4*I*d*c*Pi*csgn(I*(1+(1+I*c* 
x)^2/(c^2*x^2+1)))^2*csgn(I*(1+(1+I*c*x)^2/(c^2*x^2+1))^2)*(2*I*arctan(c*x 
)*ln(1+(1+I*c*x)^2/(c^2*x^2+1))+2*arctan(c*x)^2+polylog(2,-(1+I*c*x)^2/(c^ 
2*x^2+1)))-1/4*I*d*c*Pi*csgn(I*(1+I*c*x)^2/(c^2*x^2+1))*csgn(I*(1+I*c*x)^2 
/(c^2*x^2+1)/(1+(1+I*c*x)^2/(c^2*x^2+1))^2)^2*(2*I*arctan(c*x)*ln(1+(1+I*c 
*x)^2/(c^2*x^2+1))+2*arctan(c*x)^2+polylog(2,-(1+I*c*x)^2/(c^2*x^2+1)))-1/ 
4*I*d*c*Pi*csgn(I/(1+(1+I*c*x)^2/(c^2*x^2+1))^2)*csgn(I*(1+I*c*x)^2/(c^2*x 
^2+1)/(1+(1+I*c*x)^2/(c^2*x^2+1))^2)^2*(2*I*arctan(c*x)*ln(1+(1+I*c*x)^2/( 
c^2*x^2+1))+2*arctan(c*x)^2+polylog(2,-(1+I*c*x)^2/(c^2*x^2+1)))+1/2*I*d*c 
*Pi*csgn(I*(1+(1+I*c*x)^2/(c^2*x^2+1)))^2*csgn(I*(1+(1+I*c*x)^2/(c^2*x^2+1 
))^2)*(I*arctan(c*x)*ln(1+I*(1+I*c*x)/(c^2*x^2+1)^(1/2))+I*arctan(c*x)*ln( 
1-I*(1+I*c*x)/(c^2*x^2+1)^(1/2))+dilog(1+I*(1+I*c*x)/(c^2*x^2+1)^(1/2))+di 
log(1-I*(1+I*c*x)/(c^2*x^2+1)^(1/2)))+1/2*I*d*c*Pi*csgn(I*(1+I*c*x)^2/(...
 
3.1.17.5 Fricas [F]

\[ \int (d+e x) (a+b \arctan (c x))^3 \, dx=\int { {\left (e x + d\right )} {\left (b \arctan \left (c x\right ) + a\right )}^{3} \,d x } \]

input
integrate((e*x+d)*(a+b*arctan(c*x))^3,x, algorithm="fricas")
 
output
integral(a^3*e*x + a^3*d + (b^3*e*x + b^3*d)*arctan(c*x)^3 + 3*(a*b^2*e*x 
+ a*b^2*d)*arctan(c*x)^2 + 3*(a^2*b*e*x + a^2*b*d)*arctan(c*x), x)
 
3.1.17.6 Sympy [F]

\[ \int (d+e x) (a+b \arctan (c x))^3 \, dx=\int \left (a + b \operatorname {atan}{\left (c x \right )}\right )^{3} \left (d + e x\right )\, dx \]

input
integrate((e*x+d)*(a+b*atan(c*x))**3,x)
 
output
Integral((a + b*atan(c*x))**3*(d + e*x), x)
 
3.1.17.7 Maxima [F]

\[ \int (d+e x) (a+b \arctan (c x))^3 \, dx=\int { {\left (e x + d\right )} {\left (b \arctan \left (c x\right ) + a\right )}^{3} \,d x } \]

input
integrate((e*x+d)*(a+b*arctan(c*x))^3,x, algorithm="maxima")
 
output
7/32*b^3*d*arctan(c*x)^4/c + 56*b^3*c^2*e*integrate(1/64*x^3*arctan(c*x)^3 
/(c^2*x^2 + 1), x) + 6*b^3*c^2*e*integrate(1/64*x^3*arctan(c*x)*log(c^2*x^ 
2 + 1)^2/(c^2*x^2 + 1), x) + 192*a*b^2*c^2*e*integrate(1/64*x^3*arctan(c*x 
)^2/(c^2*x^2 + 1), x) + 56*b^3*c^2*d*integrate(1/64*x^2*arctan(c*x)^3/(c^2 
*x^2 + 1), x) + 12*b^3*c^2*e*integrate(1/64*x^3*arctan(c*x)*log(c^2*x^2 + 
1)/(c^2*x^2 + 1), x) + 6*b^3*c^2*d*integrate(1/64*x^2*arctan(c*x)*log(c^2* 
x^2 + 1)^2/(c^2*x^2 + 1), x) + 192*a*b^2*c^2*d*integrate(1/64*x^2*arctan(c 
*x)^2/(c^2*x^2 + 1), x) + 24*b^3*c^2*d*integrate(1/64*x^2*arctan(c*x)*log( 
c^2*x^2 + 1)/(c^2*x^2 + 1), x) + 1/2*a^3*e*x^2 + a*b^2*d*arctan(c*x)^3/c - 
 12*b^3*c*e*integrate(1/64*x^2*arctan(c*x)^2/(c^2*x^2 + 1), x) + 3*b^3*c*e 
*integrate(1/64*x^2*log(c^2*x^2 + 1)^2/(c^2*x^2 + 1), x) - 24*b^3*c*d*inte 
grate(1/64*x*arctan(c*x)^2/(c^2*x^2 + 1), x) + 6*b^3*c*d*integrate(1/64*x* 
log(c^2*x^2 + 1)^2/(c^2*x^2 + 1), x) + 3/2*(x^2*arctan(c*x) - c*(x/c^2 - a 
rctan(c*x)/c^3))*a^2*b*e + a^3*d*x + 56*b^3*e*integrate(1/64*x*arctan(c*x) 
^3/(c^2*x^2 + 1), x) + 6*b^3*e*integrate(1/64*x*arctan(c*x)*log(c^2*x^2 + 
1)^2/(c^2*x^2 + 1), x) + 192*a*b^2*e*integrate(1/64*x*arctan(c*x)^2/(c^2*x 
^2 + 1), x) + 6*b^3*d*integrate(1/64*arctan(c*x)*log(c^2*x^2 + 1)^2/(c^2*x 
^2 + 1), x) + 3/2*(2*c*x*arctan(c*x) - log(c^2*x^2 + 1))*a^2*b*d/c + 1/16* 
(b^3*e*x^2 + 2*b^3*d*x)*arctan(c*x)^3 - 3/64*(b^3*e*x^2 + 2*b^3*d*x)*arcta 
n(c*x)*log(c^2*x^2 + 1)^2
 
3.1.17.8 Giac [F]

\[ \int (d+e x) (a+b \arctan (c x))^3 \, dx=\int { {\left (e x + d\right )} {\left (b \arctan \left (c x\right ) + a\right )}^{3} \,d x } \]

input
integrate((e*x+d)*(a+b*arctan(c*x))^3,x, algorithm="giac")
 
output
sage0*x
 
3.1.17.9 Mupad [F(-1)]

Timed out. \[ \int (d+e x) (a+b \arctan (c x))^3 \, dx=\int {\left (a+b\,\mathrm {atan}\left (c\,x\right )\right )}^3\,\left (d+e\,x\right ) \,d x \]

input
int((a + b*atan(c*x))^3*(d + e*x),x)
 
output
int((a + b*atan(c*x))^3*(d + e*x), x)